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Prediction of permeability for porous media reconstructed using multiple-point statistics
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To predict multiphase flow through geologically realistic porous media, it is necessary to have a three-
dimensionak3D) representation of the pore space. We use multiple-point statistics based on two-dimensional
(2D) thin sections as training images to generate geologically realistic 3D pore-space representations. Thin-
section images can provide multiple-point statistics, which describe the statistical relation between multiple
spatial locations and use the probability of occurrence of particular patterns. Assuming that the medium is
isotropic, a 3D image can be generated that preserves typical patterns of the void space seen in the thin
sections. The method is tested on Berea sandstone for which a 3D image from mi¢f@e@iputerized
Tomography scanning is available and shows that the use of multiple-point statistics allows the long-range
connectivity of the structure to be preserved, in contrast to two-point statistics methods that tend to underes-
timate the connectivity. Furthermore, a high-resolution 2D thin-section image of a carbonate reservoir rock is
used to reconstruct 3D structures by the proposed method. The permeabilities of the statistical images are
computed using the lattice-Boltzmann meth@®M ). The results are similar to the measured values, to the
permeability directly computed on the micro-CT image for Berea and to predictions using analysis of the 2D
images and the effective medium approximation.
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[. INTRODUCTION relation function of a 2D thin section has been widely ap-
plied [14,15. However, these two constraints have been
found to be insufficient to reproduce the microstructure of

The reconstruction of three-dimensioi@D) porous me-  particulate media, such as grain or sphere pekss. The
dia is of great interest in a wide variety of fields, including simulated annealing method is a popular reconstruction
earth science and engineering, biology, and medicine. Thenethod, which can improve the results through the use of
structural information obtained can be used to predict transadditional morphological descriptors, such as lineal path
port properties, using, for instance, pore-scale network modfunction, pore and solid phase chord distributighg—19.
eling models[1] or lattice Boltzmann simulatiof2]. Recently a sort of pattern recognition approach using a small

A variety of methods have been used to create 3D porgemplate has been develop@®]. This is an efficient method
space images including serial sectioniff], focused ion
beam [4,5], laser scanning confocal microscofg], and
x-ray computed tomography7,8]. Figure 1 shows a micro
x-ray CT image of Berea sandstone imaged at a resolution of
approximately 1Qum [9]. In addition, the porous medium
can be reconstructed by modeling the geological processes
by which it was formed10-12.

However, in many cases the submicron structures present
in many rocks, particularly carbonatgs3], preclude direct
imaging, and the geological history is too complex for
process-based reconstruction to be applied easily. In these
cases, it is necessary to construct 3D structures from more
readily available two-dimensiongPD) images.

A. Reconstruction of porous media

B. Stochastic reconstruction

Two-dimensional thin sections are, in contrast to 3D im-
ages, often readily available at high resolution. Geometrical
properties, such as the porosity and the two-point correlation
function, can be measured from these sections and used to
generate a 3D image with the same statistical properties. This
has the advantage of being quite general, allowing a wide FIG. 1. A 3D pore-space image of Berea sandstone. The pore
variety of porous media to be described. Reconstruction of @pace is shown in gray. The image was generated using micro-CT
3D binary image given the porosity and two-point autocor-scanning with a resolution of approximately ién [9].
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for generating a wide variety of pore structures in 2D bybeyond the two-point correlation. A straightforward way to
replicating patterns in a five-point stencil using a Markovreproduce a geologically realistic structure with specific
chain Monte Carlo methodology. Our multiple-point statis- shapes consists of generating patterns with shapes observed
tics approach, described later, is a generalization of this techin a reference and then distributing these patterns over the
nique, where we capture patterns described in a template ofiodel.
arbitrary size to capture large-scale patterns in the pore Strebelleet al.[25] pioneered an approach that combines
space. The use of multiple-point statistics is more generahe easy conditioning of pixel-based algorithms with the
than the three- and four-point statistical correlation functionsability to reproduce patterns of object-based techniques. The
used by Yacet al. [21]. As we discuss below, the disadvan- complex geological structures expected to be present at the
tage of ignoring multiple-point statistics is that the simulatedfield scale are characterized by multiple-point statistics. Such
pore space may ignore the long-range connectivity of thenultiple-point statistics can be read from training images.
pore spacg22-24. For example, Manwarét al. [23] pro-  The multiple-point statistics inferred from the training im-
vided a detailed investigation of their methdd7,1§ ages are then exported to the model, where they are anchored
through computation of the local porosity and showed thato the conditioning data using a pixel-based sequential simu-
incorporation of only the autocorrelation function and thelation algorithm. Their algorithm was used to simulate a tur-
lineal path function in the reconstruction method may showbidite reservoir where flow is controlled by meandering
significant differences of the geometrical connectivity be-channels. The final numerical models reproduced these chan-
tween the reconstructed and the experimental samples.  nel patterns and honored all conditioning data. C4263
applied this method to a synthetic sand channel reservoir. He
compared the realization generated by the multiple-point
method with a traditional indicator methd®0] using the

We will pursue the multiple-point statistical technique in- exhaustive variogram of the training image as a model. The
troduced in geostatistics to represent connected geologicgke of two-point statistics failed to reproduce the channeling
bodies, such as sand channels, at the field @i Our  pehavior. The multiple-point method, which appeared to be
problem is conceptually similar—we need to generate porgyractical, general, and fast, can be applied to our problem at
spaces that have a high degree of interconnectivity. In previthe pore scale.
ous work[26], we have applied this methodology to study  \We will make one major extension of the method. In the
the percolation probabilities of Berea and Fontainebleayyork of Strebelleet al. [25] and Caerg29], 2D training
sandstones that have already been characterized by oth@fages were used to generate 2D statistical realizations. In

means[27,28. In this paper, for completeness, we first de- this paper we will generate 3D images from 2D images.
scribe the technique and then apply it to study both sand-

stone and carbonate samples. The long-range connectivity of B. Multiple-point statistics method

the pore structure is tested by measuring the percolation The extraction of multiple-point statistics from the train-

probability and by predicting permeability using the lattice-ing image and their reproduction in a stochastic model

Boltzmann method. In addition permeabilities of the struc-mainly consists of two stepgi) extracting multiple-point

tures are predicted directly from 2D images using the effecstatistics from training images arii) pattern reproduction.

tive medium approximation. The training image in Fig. 2 is scanned using a temptlate
composed ofy, locationsu, and a central locatiod

C. Multiple-point statistics

II. RECONSTRUCTION OF PORE-SPACE > L2
=0+ =1, ...
REPRESENTATIONS Ug=U+h, a=1,..n, (1)
A. Need for higher-order information where theh, are the vectors describing the template. For
Recent studies have cast doubt concerning the ability of'St2nce: in Fig. &), h, are the 80 vectors of the square 9

traditional spatial correlation functions to describe rock tex-><9 ‘emp'?“?- : : :

ture, especially in terms of the reproduction of the connec- The training image is scanned by th*e template in order to
tivity of the media[22,27]. Traditional stochastic reconstruc- F:ollect the patte_r r(P? at eqch IO.C atioru. The pattern, for
tions using Gaussian random fields and simulated annealidgStance shown in Fig.(B), is defined by

are limited to the reproduction of low-order statistics inferred TN _

from readily available 2D images. Identification of low-order P = (iU +he) =1, .. i @
statistics is, however, not sufficient to reproduce connectewherei(l) is the data value at the point within the template.
long-range geometry or patterns with characteristic shapelSach point in the template has a number to identify the pat-
(e.g., pore spacggor some cases, such as media with lowtern and to store the pattern in memory. The set of all pat-
porosity. The reconstruction of such specific patterns callserns scanned from the training image results itraéning

for the characterization of the spatial continuity at three ordata set
more locations at a time. Reproduction of multiple-point o
continuity in the structure is critical, not so much to produce Se&{p(y),j =1, ... Nih 3)
geologically realistic images, but also to provide accuratevhereSetrefers to the training data set constructed with the
flow predictions through the structures. A more realistic re-templatet. N; is the number of different central locations of
construction can be obtained by using structural informatiortemplatet over the training image.
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The CPDF is inferred directly and consistently from the
training image.

To generate a 3D structure from 2D information, mea-
sured multiple-point statistics on one plane are rotated 90°
around each principal axis. Measured statistics onXNe
plane are transformed to théZ and theXZ planes with an
assumption of isotropy in orthogonal directions. At every
voxel (volume pixe) in order to assign void or solid phase,
three principal orthogonal plane§y, XZ, andY Z intersect-
ing this voxel are used to find conditioning data on these
planes one by one. Each probability of the phase at this voxel
on the different planes is estimated by this process. To obtain
a single probability on this voxel, the weighted average by
the number of conditioning data on each plane is used to
combine three probabilities. Finally, the phase at the voxel is
assigned based on this combined probability to generate a 3D
image. There is less conditioning data during the initial stage
of the reproduction when sufficient conditioning data are not

FIG. 2. Thin section used as a training image for Berea sandava"ab_le' in t_hls Case,_the porosity \/_QI_ue can be used as the
stone with a porosity of 0.1778L28 pixels. The pore space is probability. Simple We!ghted probabilities are used for our
shown white and the grain black. The resolution of the image ig°0re-scale reconstruction; however, another method to com-
10 um. bine different probabilities has been develog@d]. This
formula combines different probabilities based on the differ-

We use binary thin section imades that have onlv void Orent conditioning data and will introduce formal data interde-
Y 9 y endence. In this work, though, this method was not tested.

solid. A detailed discussion of the training image can be” Finding and storing all required CPDF from a training

found in Sec. IV. . . . L .
image easily results in the acquisition of excessive amounts

Multiple-point statistics are probabilities of the occur- _, - . . A
. of information. Inference of a probability distribution func-
rence of patterns. The probability of occurrence of any pat-

. S - tion conditional to a pattern requires sufficient occurrences,
tern p, can be inferred from the training image by counting which are dependent on the size of the training image, should
the numberc(p,) of replicates ofp,, which should have the b 9 ge,

point statistics can be identified to the proportion take two phasegroid or solid. The total number of possible

Pr(p,) =~ c(p,)/N,, (4)  Ppatternsis thus®, which means that only a relatively small
number of CPDF can be actually inferred from the training
where N, is the size of the training image. The key is the image. To remove this problem, at each unsampled node, we
determination of the local conditional probability distribution infer the local CPDF by scanning the training image with
functions (CPDP. We need to evaluate the probability that progressive reduction of the sizeof the conditioning pat-
the unknown attribute valugu) takes any of two possible tern p, until a designated minimum number of replicates of
phases—void or solid—given nearest data during the re- p, are found. To minimize the repetitive process and the
production at any unsampled locatian If multiple-point  CPU time, each unsampled grid node is visited only once
statistics are available, then the conditioningi@f) to the using a random path and each simulated value becomes a
single global patterrp, can be considered, and the condi- conditioning datum value. Conditioning data are frozen at
tional probability can be identified to the training proportion. their data location and used for the successive simulation.
These cycles are iterated until all the voxels points are simu-
lated. In order to avoid the repetitive scanning of the training
image and to store multiple-point statistics effectively, a dy-
namic data structure called a search tree is used to store all
training CPDF in advance. The algorithm is explained by a
flow chart in Fig. 4.

A large template is necessary to reproduce large-scale
structures. The template size can be theoretically expanded
to match the largest structure in the training image. However,

() (b) the template size is limited by memory limitations in the
numerical simulation. This problem is solved using a variety

FIG. 3. () A 9 X9 template to capture multiple-point statistics. Of multigrid simulation[25,29. Four different sized tem-
The training image is scanned and each occurrence of any possib#ates are used to scan the training image, resulting in four
pattern of void space and solid is recordéu). A pattern measured different data setsSet{, Set$, Sett, and Set . Larger
by a 9x9 template. The frequency of every possible pattern isscale templates can simply be expanded from the small-scale
found by scanning the template over the training image. template. In a multigrid system, a simulation is first per-
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I Scan training image to build search tree ‘ the 3D image and reduces the noise. The image has a differ-
ent porosity from the original after opening operation. We

| Define random path to visit all unsampled voxel ‘ adeSt the porOSity by Counting the number of neighbor piX-
els of the other phase in & Begion and compare this number
to some threshold valugoefficient valug¢ The phase of the
central pixel is changed if the count is exceeded. The coef-
ficient value is chosen to result in the correct, original, value
Is this a datum location? > of pOfOSity.
No
Look at each plane, XY, XZ, YZ, respectively, around this voxel

Visit new voxel

IIl. NUMERICAL METHODS

Retain the template n locations, n” of which are A. Effective medium approximation (EMA)
data on the specified plane

If the 3D microstructure is available, then solving the
Draw value using _ Navier-Stokes equations by, for instance, the lattice-
porosity &y probability Boltzmann method can yield the permeability with reason-
able accuracy at the expense of extensive data collection and

e t;’i;‘f;’:;};ﬁf;g" e computation. On the other hand, a quick estimation of per-
for which the center value is s meability directly from a 2D image can be made by the ex-
tended version of the EMA33]. First the pore size distribu-
Ve gggig:ﬁ?:;td’z‘;ay tion is estimated from the 2D image. The perimefeand
n=n’-1 areaA of each pore in a 2D image are estimated by the image
analysis in order to approximate the hydraulic radiis

No

o TR i B =A3_/P2. A stereological corr_ec.tion multiplies the hydraulic
T }—' radius to obtain a more realistic conductance. The EMA re-

places each conductan€gin a pore network with the effec-

> tive value C. The effective conductance can be found by

solving the following equation:

Combine all three local cpdf by the weight of the number of N Cori— C
conditioning data to obtain single cpdf and assign simulated 2 eff i =0

hase from that cpdf and store it as hard dat - -
phase from that cpdf and store it as hard datum i (2/2 1)Ceff+ Ci

©)

wherez is the coordination number that represents the num-
ber of throats connected to each pore. Assuming a cubic
network (z=6), the permeability is calculated using

FIG. 4. Flow diagram of multiple-point statistics reconstruction
of pore space images.

formed on the coarsest grid. Once the coarse simulation is _ NG

finished, the simulated values are assigned to the correct grid - 1.47A 0
locations on the finer grid and used as conditioning data on . . . )
the finer grid. When large-scale structures exist in the trainWhereN is the number of conductors in the designated di-
ing image, this multigrid approach captures the large-scal&ection andAy, is total area. The number density correction
multiple-point statistics effectively while requiring relatively factor, which is derived for the number density of pore inter-
little memory. sections made by an arbitrary slice in a cubic network, is

1.47. More details can be found in Loek al. [33].

(6)

C. Image processing B. Lattice-Boltzmann method (LBM)

Unrealistic noise in the image due to insufficient statistics 1 |attice-Boltzmann method BM) provides a good

slightly increase the porosity of the reconstructed structure;
however, we confirmed the effect of changing structure was
negligible by comparing the two-point correlation function in
the reference and the reconstruction. In addition to this pro- Japan Oil, Gas and Metals National Corporatid®G-
cess, we use simple binary image processing to reduce noi$4EC, the successor to Japan National Oil Corporatiuas

in the void phase and smooth the boundary between void andeveloped a 3D two-phase LB model based on the 2D two-
solid. First we use a 3D opening operation in Acbic  phase LB model proposed by Grunetal. [36]. The model
neighborhood pattern containing a total of 27 pi{&g]. We  has been validated by precise comparisons with empirical
have confirmed this simple operation reasonably smootheaquations, analytical solutions, and experim¢®®@. We use

1. Model description: 3D single-phase model
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this LBM as a single-phase flow simulator in this study. The 5
model for the single phase can be described as —&— 10umbixel PR
- 4 —{— 5 pym/pixel -
filx +e,t+1) - fi(x,t) = Qi(fi(x,1), (7) § P -
wheref;(x,t) is the particle distribution function at spage 2 ® -~
and timet along theith direction(i=0,1,2,...,18 in our Sl -~
case. ;(fi(x,1)) is the collision operator ang is the local fE_’ g/D/D
particle velocity. We use a three-dimensional 19-velocity g1}
model, D3Q19. D3Q19 has 19 velocity vectors including a
rest vector. 0
The collision operato)®®X represents the relaxation 0 005 eticitcosity T 0.2

process to local equilibrium as well as 2D LBM. We use the eHe vscosty
Bhatnagar-Gross-KrookBGK) [38] collision operator. This FIG. 5. Finite-size effects and the kinetic-viscosity effect in the
operator is widely used due to its simplicity, LBM using Berea sandstone. A subgrid of the micro-CT im@gimee

1 643, porosity=0.1745is taken and its size is doubled to confirm the

QBCK = — Z[f(x,1) - fi(eq)(x,t)], (8) effects of lattice spacing on the predicted permeability.
T

where 7 is the single time-relaxation parameter affc’ﬂ) is  decrease in the kinetic viscosity=(27—1)/6. Smaller val-

the local equilibrium state depending on the local density andles of v generally decrease the finite-size effects. Deciding
velocity. The local equilibrium state can be chosen with theon appropriate values for (or 7) and the discretization level
conservation of mass and momentum. Our local equilibriunis still an open question and is not yet fully understood. For
distribution functions in the D3Q19 model are described beour results we take the pixel size of the images as the lattice

low, depending on the direction: spacing(10 um for Berea sandstone and 0.345 for the
- 1 1oy - carbonate rockandr=0.6 for both cases. Although the mod-
ff9=p(3-3u%), =0 (for the rest position els with different lattice spacing andyield different perme-
abilities, keeping the parameters fixed, especially for Berea
f<leq> :p[lig + f-ls(eI -u) + ‘-1‘(@I ‘u)2- %z“zl sandstone, allows a fair comparison of the permeability on

the images reconstructed using micro-CT scanning and

i=1,---6 (for rectangular directions multiple-point statistics.

fled = g[l_ls +ie-u)+ie-u?- 2], IV. ROCK SAMPLES

A. Berea sandstone

i=7,---18 (for diagonal directions 9) The x-ray microtomographic image of Berea sandstone is
wherep andu are the density and the local velocity respec__use(_i as the experimental refe_rence data and parts of the train-
tively. Thus, 3D single-phase LBM can be describéd as follN9 Image for our reconstruction method. The sample.h_as a

lows: porosity .of 0.1778 compargt_j to 0.23 of the Ia_rger original

core, which has a permeability of 1.1[B]. The differences

1 between the porosity of the original core and that of the

filx+e,t+1) = fi(x,t) =- ;[fi(xvt) - f*9(x,0]. (10  microtomographic data are due to the heterogeneity of the
sandstone, the difference in sample size, and the resolution

of the microtomography. The experimental sample is referred

2. Boundary conditions to as micro-CT in the following. 2D slices of the micro-CT

images are shown in Fig. 2.
The bounce-back scheme at wdlB9] is used to obtain g g

no-slip velocity conditions. By the bounce-back scheme,

vv_he_n a_particle distribution moves to a wall, the particl«_a B. Carbonate rock

distribution scatters back to the node it came from. This ) )
simple boundary scheme allows the LBM to simulate fluid The carbonate rock sample used in our study consists of

flows in complicated geometries. The flow field is computed"mesmne and is classified as bioclastic packstone/grainstone.
using periodic boundary conditions. The core plug of this rock with 38 mm diameter and 70 mm

long has a porosity of 0.318 and a permeability of 6.7 mD. A
conventional CT measurement with a lower resolution than
micro-CT reveals that the porosities in the measured voxels
There are finite-size effects and a kinetic-viscosdyre-  vary from 0.25 to 0.40 for the plugt2]. As described before,
laxation parametgdependency in the LBNXO0,4]] (Fig. 5). there is no 3D microstructure for this rock because the mean
Simulations with a finer discretization yield lower perme- pore size is smaller than the resolution of micro-CT scan-
abilities. The predicted permeability also decreases with aing. A backscattered electron micrograph image shown in

3. Finite-size effects
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FIG. 6. (a) Backscattered electron micrograph image of the car-
bonate rock(b) The image after binarization for the permeability
estimation(1536x 1024 pixels, the average porosity=0.357

Fig. 6 is used as a training image in order to reconstruct a 3D
structure by our method.

C. Selection of a 2D thin section

Porosity measured from a 2D slice of a micro-CT image. FIG. .8' .A selected pinary image of .the ce_xrbonate r(_)Ck' The
. . image size is 512 512 pixels(0.345 um/pixel) with a porosity of
of the sandstone fluctuates as shown in Fig. 7. In order 14 331
reconstruct a 3D structure effectively from 2D cuts, a repre-
sentative 2D image should be selected especially in terms of
porosity. We take the slice indicated in this figure by an
arrow that has a porosity close to that of the whole sample. We use four different sized templates with the same
For the carbonate rock, a part of the binarized thin-sectio®x 9 square shape, spanning<®, 18x18, 36X 36 and
image is used as the training image. A %1212 pixel image 72X 72 pixels. A larger template is preferable in order to
with a porosity of 0.331 shown in Fig. 8 is selected from thecapture large structures directly; however, it takes much
original larger imagdFig. 6b)] to reduce the computation more CPU time and introduces more noise if the training
time in the reconstruction process. image does not provide sufficient statistics. For example, if
the square templates were expanded from®to 11X 11
with same four-stage multigrid system, the CPU time ap-

B. Template selection

V. RESULTS proximately doubled for a 15Gstructure. A smaller template
N o leads to a reconstruction with fewer constraints and less
A. Permeability estimation by EMA noise, but large structures are not so accurately reproduced.

We decided to use a9 template after considering larger

The permeability of each sample is estimated directly, d I | hi h . binati
from the 2D images. A stereological correction factor of 0 44209 Smatier temp ates_—t 'S gave the op_t|mum combination
) "7 of CPU time, lack of noise, and preservation of large features

is mulnphgd to the measured hydrguhc raditds). Agsgm— ajn the pore space.

ing a cubic network, the coordination number of six is use

in our estimations. We know the assumption of cubic pore

network might be oversimplified; however, the EMA is use- C. Unconditional 3D reconstruction

ful to estimate permeability without massive computational A 3p subgrid of reconstructed Berea sandstone is visually
requirements and to evaluate a 2D image in advance of 3ldompared with that of micro-CT image in Fig. 9. In order to
reconstruction. Estimations of permeabilities for both Berea pnress unrealistic noise and smooth the image, postpro-
sandstone and the carbonate rock are in reasonably godssing(opening operationis used as described before.
agreement with experiment data as shown in Table |, althen additional erosion is applied in order to adjust the po-
though the size of the samples is different. rosity values. The noise is significantly reduced and charac-
teristic structures of the void space are reasonably preserved

03 after the processing. The porosity of each 2D slice is de-
§°~2W TABLE |. Estimated permeability mD. Note that in the LBM
column, (CT) indicates the predicted permeability computed di-
01 ‘ ' rectly on the micro-CT image. Other values indicatBa) are cal-
0 0.2 0.4 0.6 0.8 1 1.2 1.4
slice interval, mm culated on the reconstructed structures.
FIG. 7. Porosity fluctuation within a_me_asured micro_struc_ture of Experiment EMA LBM
Berea sandstone. The average porosity is 0.1775, slice size=1.28
X 1.28 mn, slice interval=10.Qum. The arrow indicates the slice, Berea 1100 1448 (CT) 1346,(Re) 1274
from which our training image was taken, which has a porosity carponate 6.7 6.05 (Re) 19.8

close to the average.
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0.034mm

FIG. 10. A 3D subgrid of reconstructed carbonate rdek
=0.318.

The reconstruction of the carbonate rock with 150xels
took approximately 14 h CPU time with an Intel Xeon
1.7 GHz computer. A part of the 2D training image is used as
conditioning data. In Fig. 12, the quality of the image is
better near the conditioning data and typical pore shapes are
more poorly reproduced away from the conditioning plane or
in orthogonal directions. We assume that the structures are
isotropic. For anisotropic media it should be possible to in-
corporate information from several training images taken in
orthogonal directions.

E. Autocorrelation function and specific surface area

Traditional two-point statistical reconstruction uses the
FIG. 9. A 3D subgrid of reconstructed Berea sandst@b®ve,  vojd-void autocorrelation function of the 3D microstructure
#=0.1747 compared to that of the micro-CT imageelow, ¢ a5 one of the matching parameters. When the microstructure
=0.178). is defined by the binary phase functif#(r)=1 if r belongs
to void spaceZ(r)=0 otherwisé, the void-void autocorrela-
creased or increased slightly from the original image; how+ion function R,(u) is defined by
ever, it is not drastically changed and the porosity in 3D is
preserved. The reconstructed image in Fig. 9 is well repro- I
duced. The smaller reconstructed image of the carbonate d=2(r) (11)
rock is also shown in Fig. 10. However, it is difficult to judge
this image because there is no 3D reference microstructure.
The 2D cuts of the 3D reconstruction of the carbonate rock
without conditioning data are shown in Fig. 11.

D. Conditional 3D reconstruction

In order to generate a more realistic structure, a part of the
training image can be used as conditioning data. This is not
always necessary for this case because the amount of condi- F|G. 11. The 2D cuts through an unconditional 3D reconstruc-
tioning data from the training image is limited. The con- tion of the carbonate rockl2&,0.345um/pixel) with the slice
straints, however, affect the reconstruction in the region neggorosities¢ indicated. The images are postprocess&HXY plane
the conditioning data. Figure 12 shows 2D cuts of a condi{z=64,4=0.4245, (2) XZ plane(Y=64,$4=0.2844, (3) YZ plane
tional 3D multiple-point reconstruction after postprocessing(X=64,$=0.2964.
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e

0.052mm
FIG. 12. The 2D cuts through a conditional 3D reconstruction of

the carbonate rockl50°,0.345um/pixel) with the slice porosities

¢ indicated. The images are postprocesgéy.XY plane (Z=75,

conditioning data,$=0.3203. (2) XY nearest conditioning plane

4
®

o
=3

3)

o
a

PRt reference, microCT

Fraction of percolating cells

I
)
\

------- Process-based method

Multiple-point statistics

(Z=74,$=0.3167. (3) XZ plane(Y=75,¢=0.3433. . | | -+~ Simuated ameaiing
0 01 0.2 0.3 04 0.5
[Z(F) - $[Z(F + 1) - ] L, mm
R,(4) = , 12
) —e (12)

FIG. 14. Fraction of percolating cells for images using different

where overbars denote statistical averages arid a lag reconstruction methods. Note that incorporating higher-order infor-

vector. mation in the reconstruction significantly improves the long-range
The autocorrelation function of our Berea sandstone i€onnectivity of the pore space, although it still performs worse than

virtually identical in the coordinate three directions confirm- Process-based reconstruction methods. The data except multiple-

ing that the structure is isotropj@6]. Figure 13 shows the POINt statistics and micro-CT are taken frg@s].

autocorrelation functions of the reconstructed Berea sand-

stone averaged over three orthogonal directions compared to 1 if M(r,L) percolates 3 directions

those measured on the micro-CT image and on the 2D train- A4(r,L) :{ 14

ing image. The agreement is excellent, demonstrating that

the multiple-point statistics method reproduces two-pointA measurement cub(r,L) of sidelengthL centered at po-

0 otherwise.

statistics accurately. sition r is used to calculate the continuous connectedness
) _ _ from one face to opposite face by percolation theph.

F. Fraction of percolating cells in the reconstructed Twenty-six nearest neighbors in 3D are used to measure the

microstructure pore connectedness. The reproduction of long-range connec-

Visual inspection of structures does not reveal the degregvity by the multiple-point statistics reconstruction for Berea
of connectivity of the structure. Porosity, specific surfacesandstone has already been presefi2éfl Here, we briefly
area, and two-point correlation functions are also insufficientepeat the result to show the capability of the method in Fig.
to distinguish different microstructures because they are all4. The figure also plots the fraction of percolating cells for
low-order information. A quantitative characterization of thethe reconstruction using simulated annealing and process-
connectivity is provided by the local percolation probabilitiesbased reconstructiof28]. In the figure, the reference mea-

or fraction of percolating cell§43] defined by sured by micro-CT and the process-based method are similar,
1 but differ from that for the structure generated using simu-

pa(L) = =) Ag(r,L), (13) lated annealing. The figure also shows that the reconstruction
m method based on the low-order correlation functions fail to

reproduce the long-range connectivity of porous media,
while the process-based method successfully reproduces the
connectivity. Our multiple-point statistics method signifi-

wherem is the number of measurement ang(r,L) is an
indicator of percolation,

1 cantly improves the connectivity over the two-point statistics
ol reforence. microCT method, although the pore space is still less well connected
' o reconstruction than the reference image.
06 S RERELES 2D training image

G. Permeability by LBM
04
1. Berea sandstone
02

Autocorrelation function

B For Berea sandstone, as shown in Table I, the computed
0 ‘ R permeabilities are 1346 mD for the micro-CT image and
1274 mD for the reconstructed microstructure, which are
also in good agreement with the experimental value
1100 mD. Here again, the LBM simulation reconfirms the

FIG. 13. Void-void autocorrelation functions of Berea sandstoneability to reproduce the long-range connectivity using
averaged over the three principal orthogonal axes. The autocorrel@aultiple-point statistics reconstruction although the predicted
tion function of the reconstructed structure is compared with that opermeability is still underestimated, which is consistent with
micro-CT (line) and that of a 2D training imag@lotted line. the percolation probability shown in Fig. 14.

0.05 0.1 0.15 0f2
02

Lag, mm
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LBM was compared with the experimental value. The pre-

Since no microtomographic image of the carbonate rocidicted permeabilities were overestimated by a factor of three;
is available, the LBM simulation is the only way to assessh_owever' the result is good conS|_der|ng the significant size
the reconstructed structures. The computed permeability afifférence between reconstructed images and the experimen-

eraged over six realizations after postprocessing is 19.8 m
for the reconstructed microstructures. Although the value is
overestimated compared to the experimental permeability
6.7 mD, the estimation is good considering the significan

size difference between the reconstructed ima@esund

50° um?) and the experimental plug core that has a volum
eight orders-of-magnitude larger. Larger training images caf’

capture more statistics and may produce more realistic i

m_

gl sample.
In this study, a combination of a small 2D image and a

of X9 template with multigrid simulation was sufficient to
€apture typical patterns seen in the 2D image. However, for

more heterogeneous samples more information is needed.

el he reconstruction can be improved using additional infor-

ation, such as higher-order information and several thin-
section images, including multi-orientation images if the me-

ages with similar permeability values to the experiment. [ndium is anisotropic, at the expense of more computer power

addition more information, such as several thin-section im

and memory.

ages and multi-orientation thin-section images, may improve

the results.

VI. CONCLUSIONS
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