
Prediction of permeability for porous media reconstructed using multiple-point statistics

Hiroshi Okabe1,2 and Martin J. Blunt1
1Department of Earth Science and Engineering, Imperial College London, SW7 2AZ, United Kingdom

2Japan Oil, Gas and Metals National Corporation, 1-2-2 Hamada, Mihama-ku, Chiba-shi, Chiba, 261-0025, Japan
(Received 10 May 2004; published 23 December 2004)

To predict multiphase flow through geologically realistic porous media, it is necessary to have a three-
dimensional(3D) representation of the pore space. We use multiple-point statistics based on two-dimensional
(2D) thin sections as training images to generate geologically realistic 3D pore-space representations. Thin-
section images can provide multiple-point statistics, which describe the statistical relation between multiple
spatial locations and use the probability of occurrence of particular patterns. Assuming that the medium is
isotropic, a 3D image can be generated that preserves typical patterns of the void space seen in the thin
sections. The method is tested on Berea sandstone for which a 3D image from micro-CT(Computerized
Tomography) scanning is available and shows that the use of multiple-point statistics allows the long-range
connectivity of the structure to be preserved, in contrast to two-point statistics methods that tend to underes-
timate the connectivity. Furthermore, a high-resolution 2D thin-section image of a carbonate reservoir rock is
used to reconstruct 3D structures by the proposed method. The permeabilities of the statistical images are
computed using the lattice-Boltzmann method(LBM ). The results are similar to the measured values, to the
permeability directly computed on the micro-CT image for Berea and to predictions using analysis of the 2D
images and the effective medium approximation.
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I. INTRODUCTION

A. Reconstruction of porous media

The reconstruction of three-dimensional(3D) porous me-
dia is of great interest in a wide variety of fields, including
earth science and engineering, biology, and medicine. The
structural information obtained can be used to predict trans-
port properties, using, for instance, pore-scale network mod-
eling models[1] or lattice Boltzmann simulation[2].

A variety of methods have been used to create 3D pore
space images including serial sectioning[3], focused ion
beam [4,5], laser scanning confocal microscopy[6], and
x-ray computed tomography[7,8]. Figure 1 shows a micro
x-ray CT image of Berea sandstone imaged at a resolution of
approximately 10mm [9]. In addition, the porous medium
can be reconstructed by modeling the geological processes
by which it was formed[10–12].

However, in many cases the submicron structures present
in many rocks, particularly carbonates[13], preclude direct
imaging, and the geological history is too complex for
process-based reconstruction to be applied easily. In these
cases, it is necessary to construct 3D structures from more
readily available two-dimensional(2D) images.

B. Stochastic reconstruction

Two-dimensional thin sections are, in contrast to 3D im-
ages, often readily available at high resolution. Geometrical
properties, such as the porosity and the two-point correlation
function, can be measured from these sections and used to
generate a 3D image with the same statistical properties. This
has the advantage of being quite general, allowing a wide
variety of porous media to be described. Reconstruction of a
3D binary image given the porosity and two-point autocor-

relation function of a 2D thin section has been widely ap-
plied [14,15]. However, these two constraints have been
found to be insufficient to reproduce the microstructure of
particulate media, such as grain or sphere packs[9,16]. The
simulated annealing method is a popular reconstruction
method, which can improve the results through the use of
additional morphological descriptors, such as lineal path
function, pore and solid phase chord distributions[17–19].
Recently a sort of pattern recognition approach using a small
template has been developed[20]. This is an efficient method

FIG. 1. A 3D pore-space image of Berea sandstone. The pore
space is shown in gray. The image was generated using micro-CT
scanning with a resolution of approximately 10mm [9].
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for generating a wide variety of pore structures in 2D by
replicating patterns in a five-point stencil using a Markov
chain Monte Carlo methodology. Our multiple-point statis-
tics approach, described later, is a generalization of this tech-
nique, where we capture patterns described in a template of
arbitrary size to capture large-scale patterns in the pore
space. The use of multiple-point statistics is more general
than the three- and four-point statistical correlation functions
used by Yaoet al. [21]. As we discuss below, the disadvan-
tage of ignoring multiple-point statistics is that the simulated
pore space may ignore the long-range connectivity of the
pore space[22–24]. For example, Manwartet al. [23] pro-
vided a detailed investigation of their method[17,18]
through computation of the local porosity and showed that
incorporation of only the autocorrelation function and the
lineal path function in the reconstruction method may show
significant differences of the geometrical connectivity be-
tween the reconstructed and the experimental samples.

C. Multiple-point statistics

We will pursue the multiple-point statistical technique in-
troduced in geostatistics to represent connected geological
bodies, such as sand channels, at the field scale[25]. Our
problem is conceptually similar—we need to generate pore
spaces that have a high degree of interconnectivity. In previ-
ous work [26], we have applied this methodology to study
the percolation probabilities of Berea and Fontainebleau
sandstones that have already been characterized by other
means[27,28]. In this paper, for completeness, we first de-
scribe the technique and then apply it to study both sand-
stone and carbonate samples. The long-range connectivity of
the pore structure is tested by measuring the percolation
probability and by predicting permeability using the lattice-
Boltzmann method. In addition permeabilities of the struc-
tures are predicted directly from 2D images using the effec-
tive medium approximation.

II. RECONSTRUCTION OF PORE-SPACE
REPRESENTATIONS

A. Need for higher-order information

Recent studies have cast doubt concerning the ability of
traditional spatial correlation functions to describe rock tex-
ture, especially in terms of the reproduction of the connec-
tivity of the media[22,27]. Traditional stochastic reconstruc-
tions using Gaussian random fields and simulated annealing
are limited to the reproduction of low-order statistics inferred
from readily available 2D images. Identification of low-order
statistics is, however, not sufficient to reproduce connected
long-range geometry or patterns with characteristic shapes
(e.g., pore spaces) for some cases, such as media with low
porosity. The reconstruction of such specific patterns calls
for the characterization of the spatial continuity at three or
more locations at a time. Reproduction of multiple-point
continuity in the structure is critical, not so much to produce
geologically realistic images, but also to provide accurate
flow predictions through the structures. A more realistic re-
construction can be obtained by using structural information

beyond the two-point correlation. A straightforward way to
reproduce a geologically realistic structure with specific
shapes consists of generating patterns with shapes observed
in a reference and then distributing these patterns over the
model.

Strebelleet al. [25] pioneered an approach that combines
the easy conditioning of pixel-based algorithms with the
ability to reproduce patterns of object-based techniques. The
complex geological structures expected to be present at the
field scale are characterized by multiple-point statistics. Such
multiple-point statistics can be read from training images.
The multiple-point statistics inferred from the training im-
ages are then exported to the model, where they are anchored
to the conditioning data using a pixel-based sequential simu-
lation algorithm. Their algorithm was used to simulate a tur-
bidite reservoir where flow is controlled by meandering
channels. The final numerical models reproduced these chan-
nel patterns and honored all conditioning data. Caers[29]
applied this method to a synthetic sand channel reservoir. He
compared the realization generated by the multiple-point
method with a traditional indicator method[30] using the
exhaustive variogram of the training image as a model. The
use of two-point statistics failed to reproduce the channeling
behavior. The multiple-point method, which appeared to be
practical, general, and fast, can be applied to our problem at
the pore scale.

We will make one major extension of the method. In the
work of Strebelleet al. [25] and Caers[29], 2D training
images were used to generate 2D statistical realizations. In
this paper we will generate 3D images from 2D images.

B. Multiple-point statistics method

The extraction of multiple-point statistics from the train-
ing image and their reproduction in a stochastic model
mainly consists of two steps:(i) extracting multiple-point
statistics from training images and(ii ) pattern reproduction.

The training image in Fig. 2 is scanned using a templatet
composed ofnt locationsuWa and a central locationuW

uWa = uW + hWa a = 1, . . . ,nt, s1d

where thehWa are the vectors describing the template. For

instance, in Fig. 3(a), hWa are the 80 vectors of the square 9
39 template.

The training image is scanned by the template in order to
collect the patternsPd at each locationuW. The pattern, for
instance shown in Fig. 3(b), is defined by

psud = hisuWd; isuW + hWad,a = 1, . . . ,ntj s2d

whereisuWd is the data value at the point within the template.
Each point in the template has a number to identify the pat-
tern and to store the pattern in memory. The set of all pat-
terns scanned from the training image results in atraining
data set

Set= hpsujd, j = 1, . . . ,Ntj, s3d

whereSetrefers to the training data set constructed with the
templatet. Nt is the number of different central locations of
templatet over the training image.
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We use binary thin section images that have only void or
solid. A detailed discussion of the training image can be
found in Sec. IV.

Multiple-point statistics are probabilities of the occur-
rence of patterns. The probability of occurrence of any pat-
tern pn can be inferred from the training image by counting
the numbercspnd of replicates ofpn, which should have the
same geometry and the same data values. Then the multiple-
point statistics can be identified to the proportion

Prspnd < cspnd/Nn, s4d

whereNn is the size of the training image. The key is the
determination of the local conditional probability distribution
functions (CPDF). We need to evaluate the probability that
the unknown attribute valueisuWd takes any of two possible
phases—void or solid—givenn nearest data during the re-
production at any unsampled locationuW. If multiple-point
statistics are available, then the conditioning ofisuWd to the
single global patternpn can be considered, and the condi-
tional probability can be identified to the training proportion.

The CPDF is inferred directly and consistently from the
training image.

To generate a 3D structure from 2D information, mea-
sured multiple-point statistics on one plane are rotated 90°
around each principal axis. Measured statistics on theXY
plane are transformed to theYZ and theXZ planes with an
assumption of isotropy in orthogonal directions. At every
voxel (volume pixel) in order to assign void or solid phase,
three principal orthogonal planesXY, XZ, andYZ intersect-
ing this voxel are used to find conditioning data on these
planes one by one. Each probability of the phase at this voxel
on the different planes is estimated by this process. To obtain
a single probability on this voxel, the weighted average by
the number of conditioning data on each plane is used to
combine three probabilities. Finally, the phase at the voxel is
assigned based on this combined probability to generate a 3D
image. There is less conditioning data during the initial stage
of the reproduction when sufficient conditioning data are not
available. In this case, the porosity value can be used as the
probability. Simple weighted probabilities are used for our
pore-scale reconstruction; however, another method to com-
bine different probabilities has been developed[31]. This
formula combines different probabilities based on the differ-
ent conditioning data and will introduce formal data interde-
pendence. In this work, though, this method was not tested.

Finding and storing all required CPDF from a training
image easily results in the acquisition of excessive amounts
of information. Inference of a probability distribution func-
tion conditional to a pattern requires sufficient occurrences,
which are dependent on the size of the training image, should
be found. For our reconstruction, each of the 80 nodes in the
data template(939 square shape) except a center point can
take two phases(void or solid). The total number of possible
patterns is thus 280, which means that only a relatively small
number of CPDF can be actually inferred from the training
image. To remove this problem, at each unsampled node, we
infer the local CPDF by scanning the training image with
progressive reduction of the sizen of the conditioning pat-
tern pn until a designated minimum number of replicates of
pn are found. To minimize the repetitive process and the
CPU time, each unsampled grid node is visited only once
using a random path and each simulated value becomes a
conditioning datum value. Conditioning data are frozen at
their data location and used for the successive simulation.
These cycles are iterated until all the voxels points are simu-
lated. In order to avoid the repetitive scanning of the training
image and to store multiple-point statistics effectively, a dy-
namic data structure called a search tree is used to store all
training CPDF in advance. The algorithm is explained by a
flow chart in Fig. 4.

A large template is necessary to reproduce large-scale
structures. The template size can be theoretically expanded
to match the largest structure in the training image. However,
the template size is limited by memory limitations in the
numerical simulation. This problem is solved using a variety
of multigrid simulation [25,29]. Four different sized tem-
plates are used to scan the training image, resulting in four
different data setsSet t1, Set t2, Set t3, and Set t4. Larger
scale templates can simply be expanded from the small-scale
template. In a multigrid system, a simulation is first per-

FIG. 2. Thin section used as a training image for Berea sand-
stone with a porosity of 0.1773s1282 pixelsd. The pore space is
shown white and the grain black. The resolution of the image is
10 mm.

FIG. 3. (a) A 939 template to capture multiple-point statistics.
The training image is scanned and each occurrence of any possible
pattern of void space and solid is recorded.(b) A pattern measured
by a 939 template. The frequency of every possible pattern is
found by scanning the template over the training image.
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formed on the coarsest grid. Once the coarse simulation is
finished, the simulated values are assigned to the correct grid
locations on the finer grid and used as conditioning data on
the finer grid. When large-scale structures exist in the train-
ing image, this multigrid approach captures the large-scale
multiple-point statistics effectively while requiring relatively
little memory.

C. Image processing

Unrealistic noise in the image due to insufficient statistics
can be reduced by image processing. Nonpercolating regions
of the solid phase correspond to islands isolated inside the
void phase. Since this is impossible in real porous media,
they were changed to appear as void phase. This process may
slightly increase the porosity of the reconstructed structure;
however, we confirmed the effect of changing structure was
negligible by comparing the two-point correlation function in
the reference and the reconstruction. In addition to this pro-
cess, we use simple binary image processing to reduce noise
in the void phase and smooth the boundary between void and
solid. First we use a 3D opening operation in a 33 cubic
neighborhood pattern containing a total of 27 pixels[32]. We
have confirmed this simple operation reasonably smoothes

the 3D image and reduces the noise. The image has a differ-
ent porosity from the original after opening operation. We
adjust the porosity by counting the number of neighbor pix-
els of the other phase in a 33 region and compare this number
to some threshold value(coefficient value). The phase of the
central pixel is changed if the count is exceeded. The coef-
ficient value is chosen to result in the correct, original, value
of porosity.

III. NUMERICAL METHODS

A. Effective medium approximation (EMA)

If the 3D microstructure is available, then solving the
Navier-Stokes equations by, for instance, the lattice-
Boltzmann method can yield the permeability with reason-
able accuracy at the expense of extensive data collection and
computation. On the other hand, a quick estimation of per-
meability directly from a 2D image can be made by the ex-
tended version of the EMA[33]. First the pore size distribu-
tion is estimated from the 2D image. The perimeterP and
areaA of each pore in a 2D image are estimated by the image
analysis in order to approximate the hydraulic radiusCi
=A3/P2. A stereological correction multiplies the hydraulic
radius to obtain a more realistic conductance. The EMA re-
places each conductanceCi in a pore network with the effec-
tive valueCeff. The effective conductance can be found by
solving the following equation:

o
i=1

N
Cef f − Ci

sz/2 − 1dCeff + Ci
= 0, s5d

wherez is the coordination number that represents the num-
ber of throats connected to each pore. Assuming a cubic
network sz=6d, the permeability is calculated using

k =
NCeff

1.47Atotal
, s6d

whereN is the number of conductors in the designated di-
rection andAtotal is total area. The number density correction
factor, which is derived for the number density of pore inter-
sections made by an arbitrary slice in a cubic network, is
1.47. More details can be found in Locket al. [33].

B. Lattice-Boltzmann method (LBM)

The lattice-Boltzmann method(LBM ) provides a good
approximation to solutions of the Navier-Stokes equations
using a parallel and efficient algorithm that readily accom-
modates complex boundaries, as encountered in porous me-
dia [34,35].

1. Model description: 3D single-phase model

Japan Oil, Gas and Metals National Corporation(JOG-
MEC, the successor to Japan National Oil Corporation) has
developed a 3D two-phase LB model based on the 2D two-
phase LB model proposed by Grunauet al. [36]. The model
has been validated by precise comparisons with empirical
equations, analytical solutions, and experiments[37]. We use

FIG. 4. Flow diagram of multiple-point statistics reconstruction
of pore space images.
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this LBM as a single-phase flow simulator in this study. The
model for the single phase can be described as

f isx + ei,t + 1d − f isx,td = Vi„f isx,td…, s7d

where f isx ,td is the particle distribution function at spacex
and time t along theith direction (i =0,1,2, . . . ,18 in our
case). Vi(f isx ,td) is the collision operator andei is the local
particle velocity. We use a three-dimensional 19-velocity
model, D3Q19. D3Q19 has 19 velocity vectors including a
rest vector.

The collision operatorVi
sBGKd represents the relaxation

process to local equilibrium as well as 2D LBM. We use the
Bhatnagar-Gross-Krook(BGK) [38] collision operator. This
operator is widely used due to its simplicity,

Vi
sBGKd = −

1

t
ff isx,td − f i

seqdsx,tdg, s8d

wheret is the single time-relaxation parameter andf i
seqd is

the local equilibrium state depending on the local density and
velocity. The local equilibrium state can be chosen with the
conservation of mass and momentum. Our local equilibrium
distribution functions in the D3Q19 model are described be-
low, depending on the direction:

f0
seqd = rs 1

3 − 1
3u2d, i = 0 sfor the rest positiond

f1
seqd = rf 1

18 + 1
6sei ·ud + 1

4sei ·ud2 − 1
12u

2g ,

i = 1,¯ 6 sfor rectangular directionsd

f2
seqd =

r

2
f 1

18 + 1
6sei ·ud + 1

4sei ·ud2 − 1
12u

2g ,

i = 7,¯ 18 sfor diagonal directionsd, s9d

wherer andu are the density and the local velocity, respec-
tively. Thus, 3D single-phase LBM can be described as fol-
lows:

f isx + ei,t + 1d − f isx,td = −
1

t
ff isx,td − f i

seqdsx,tdg. s10d

2. Boundary conditions

The bounce-back scheme at walls[39] is used to obtain
no-slip velocity conditions. By the bounce-back scheme,
when a particle distribution moves to a wall, the particle
distribution scatters back to the node it came from. This
simple boundary scheme allows the LBM to simulate fluid
flows in complicated geometries. The flow field is computed
using periodic boundary conditions.

3. Finite-size effects

There are finite-size effects and a kinetic-viscosity(or re-
laxation parameter) dependency in the LBM[40,41] (Fig. 5).
Simulations with a finer discretization yield lower perme-
abilities. The predicted permeability also decreases with a

decrease in the kinetic viscosityn=s2t−1d /6. Smaller val-
ues ofn generally decrease the finite-size effects. Deciding
on appropriate values forn (or t) and the discretization level
is still an open question and is not yet fully understood. For
our results we take the pixel size of the images as the lattice
spacing(10 mm for Berea sandstone and 0.345mm for the
carbonate rock) andt=0.6 for both cases. Although the mod-
els with different lattice spacing andt yield different perme-
abilities, keeping the parameters fixed, especially for Berea
sandstone, allows a fair comparison of the permeability on
the images reconstructed using micro-CT scanning and
multiple-point statistics.

IV. ROCK SAMPLES

A. Berea sandstone

The x-ray microtomographic image of Berea sandstone is
used as the experimental reference data and parts of the train-
ing image for our reconstruction method. The sample has a
porosity of 0.1778 compared to 0.23 of the larger original
core, which has a permeability of 1.1 D[9]. The differences
between the porosity of the original core and that of the
microtomographic data are due to the heterogeneity of the
sandstone, the difference in sample size, and the resolution
of the microtomography. The experimental sample is referred
to as micro-CT in the following. 2D slices of the micro-CT
images are shown in Fig. 2.

B. Carbonate rock

The carbonate rock sample used in our study consists of
limestone and is classified as bioclastic packstone/grainstone.
The core plug of this rock with 38 mm diameter and 70 mm
long has a porosity of 0.318 and a permeability of 6.7 mD. A
conventional CT measurement with a lower resolution than
micro-CT reveals that the porosities in the measured voxels
vary from 0.25 to 0.40 for the plug[42]. As described before,
there is no 3D microstructure for this rock because the mean
pore size is smaller than the resolution of micro-CT scan-
ning. A backscattered electron micrograph image shown in

FIG. 5. Finite-size effects and the kinetic-viscosity effect in the
LBM using Berea sandstone. A subgrid of the micro-CT image(size
643, porosity=0.1745) is taken and its size is doubled to confirm the
effects of lattice spacing on the predicted permeability.
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Fig. 6 is used as a training image in order to reconstruct a 3D
structure by our method.

C. Selection of a 2D thin section

Porosity measured from a 2D slice of a micro-CT image
of the sandstone fluctuates as shown in Fig. 7. In order to
reconstruct a 3D structure effectively from 2D cuts, a repre-
sentative 2D image should be selected especially in terms of
porosity. We take the slice indicated in this figure by an
arrow that has a porosity close to that of the whole sample.

For the carbonate rock, a part of the binarized thin-section
image is used as the training image. A 5123512 pixel image
with a porosity of 0.331 shown in Fig. 8 is selected from the
original larger image[Fig. 6(b)] to reduce the computation
time in the reconstruction process.

V. RESULTS

A. Permeability estimation by EMA

The permeability of each sample is estimated directly
from the 2D images. A stereological correction factor of 0.44
is multiplied to the measured hydraulic radius[33]. Assum-
ing a cubic network, the coordination number of six is used
in our estimations. We know the assumption of cubic pore
network might be oversimplified; however, the EMA is use-
ful to estimate permeability without massive computational
requirements and to evaluate a 2D image in advance of 3D
reconstruction. Estimations of permeabilities for both Berea
sandstone and the carbonate rock are in reasonably good
agreement with experiment data as shown in Table I, al-
though the size of the samples is different.

B. Template selection

We use four different sized templates with the same
939 square shape, spanning 939, 18318, 36336 and
72372 pixels. A larger template is preferable in order to
capture large structures directly; however, it takes much
more CPU time and introduces more noise if the training
image does not provide sufficient statistics. For example, if
the square templates were expanded from 939 to 11311
with same four-stage multigrid system, the CPU time ap-
proximately doubled for a 1503 structure. A smaller template
leads to a reconstruction with fewer constraints and less
noise, but large structures are not so accurately reproduced.
We decided to use a 939 template after considering larger
and smaller templates—this gave the optimum combination
of CPU time, lack of noise, and preservation of large features
in the pore space.

C. Unconditional 3D reconstruction

A 3D subgrid of reconstructed Berea sandstone is visually
compared with that of micro-CT image in Fig. 9. In order to
suppress unrealistic noise and smooth the image, postpro-
cessing (opening operation) is used as described before.
Then additional erosion is applied in order to adjust the po-
rosity values. The noise is significantly reduced and charac-
teristic structures of the void space are reasonably preserved
after the processing. The porosity of each 2D slice is de-

TABLE I. Estimated permeability mD. Note that in the LBM
column, (CT) indicates the predicted permeability computed di-
rectly on the micro-CT image. Other values indicated(Re) are cal-
culated on the reconstructed structures.

Experiment EMA LBM

Berea 1100 1448 (CT) 1346,(Re) 1274

Carbonate 6.7 6.05 (Re) 19.8

FIG. 8. A selected binary image of the carbonate rock. The
image size is 5123512 pixelss0.345mm/pixeld with a porosity of
0.331.

FIG. 6. (a) Backscattered electron micrograph image of the car-
bonate rock.(b) The image after binarization for the permeability
estimation(153631024 pixels, the average porosity=0.357).

FIG. 7. Porosity fluctuation within a measured microstructure of
Berea sandstone. The average porosity is 0.1775, slice size=1.28
3 1.28 mm2, slice interval=10.0mm. The arrow indicates the slice,
from which our training image was taken, which has a porosity
close to the average.
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creased or increased slightly from the original image; how-
ever, it is not drastically changed and the porosity in 3D is
preserved. The reconstructed image in Fig. 9 is well repro-
duced. The smaller reconstructed image of the carbonate
rock is also shown in Fig. 10. However, it is difficult to judge
this image because there is no 3D reference microstructure.
The 2D cuts of the 3D reconstruction of the carbonate rock
without conditioning data are shown in Fig. 11.

D. Conditional 3D reconstruction

In order to generate a more realistic structure, a part of the
training image can be used as conditioning data. This is not
always necessary for this case because the amount of condi-
tioning data from the training image is limited. The con-
straints, however, affect the reconstruction in the region near
the conditioning data. Figure 12 shows 2D cuts of a condi-
tional 3D multiple-point reconstruction after postprocessing.

The reconstruction of the carbonate rock with 1503 voxels
took approximately 14 h CPU time with an Intel Xeon
1.7 GHz computer. A part of the 2D training image is used as
conditioning data. In Fig. 12, the quality of the image is
better near the conditioning data and typical pore shapes are
more poorly reproduced away from the conditioning plane or
in orthogonal directions. We assume that the structures are
isotropic. For anisotropic media it should be possible to in-
corporate information from several training images taken in
orthogonal directions.

E. Autocorrelation function and specific surface area

Traditional two-point statistical reconstruction uses the
void-void autocorrelation function of the 3D microstructure
as one of the matching parameters. When the microstructure
is defined by the binary phase function[Zsrd=1 if r belongs
to void space,Zsrd=0 otherwise], the void-void autocorrela-
tion functionRZsud is defined by

f = ZsrWd s11d

FIG. 9. A 3D subgrid of reconstructed Berea sandstone(above,
f=0.1747) compared to that of the micro-CT image(below, f
=0.1781).

FIG. 10. A 3D subgrid of reconstructed carbonate rocksf
=0.318d.

FIG. 11. The 2D cuts through an unconditional 3D reconstruc-
tion of the carbonate rocks1283,0.345mm/pixeld with the slice
porositiesf indicated. The images are postprocessed.(1) XY plane
sZ=64,f=0.4245d, (2) XZ planesY=64,f=0.2844d, (3) YZ plane
sX=64,f=0.2964d.
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RZsu→d =
fZsrWd − fgfZsrW + uWd − fg

ff − f2g
, s12d

where overbars denote statistical averages andu is a lag
vector.

The autocorrelation function of our Berea sandstone is
virtually identical in the coordinate three directions confirm-
ing that the structure is isotropic[26]. Figure 13 shows the
autocorrelation functions of the reconstructed Berea sand-
stone averaged over three orthogonal directions compared to
those measured on the micro-CT image and on the 2D train-
ing image. The agreement is excellent, demonstrating that
the multiple-point statistics method reproduces two-point
statistics accurately.

F. Fraction of percolating cells in the reconstructed
microstructure

Visual inspection of structures does not reveal the degree
of connectivity of the structure. Porosity, specific surface
area, and two-point correlation functions are also insufficient
to distinguish different microstructures because they are all
low-order information. A quantitative characterization of the
connectivity is provided by the local percolation probabilities
or fraction of percolating cells[43] defined by

p3sLd =
1

m
o

r

L3sr,Ld, s13d

wherem is the number of measurement andL3sr ,Ld is an
indicator of percolation,

L3sr,Ld = H1 if Msr,Ld percolates 3 directions

0 otherwise.
J s14d

A measurement cubeMsr ,Ld of sidelengthL centered at po-
sition r is used to calculate the continuous connectedness
from one face to opposite face by percolation theory[44].
Twenty-six nearest neighbors in 3D are used to measure the
pore connectedness. The reproduction of long-range connec-
tivity by the multiple-point statistics reconstruction for Berea
sandstone has already been presented[26]. Here, we briefly
repeat the result to show the capability of the method in Fig.
14. The figure also plots the fraction of percolating cells for
the reconstruction using simulated annealing and process-
based reconstruction[28]. In the figure, the reference mea-
sured by micro-CT and the process-based method are similar,
but differ from that for the structure generated using simu-
lated annealing. The figure also shows that the reconstruction
method based on the low-order correlation functions fail to
reproduce the long-range connectivity of porous media,
while the process-based method successfully reproduces the
connectivity. Our multiple-point statistics method signifi-
cantly improves the connectivity over the two-point statistics
method, although the pore space is still less well connected
than the reference image.

G. Permeability by LBM

1. Berea sandstone

For Berea sandstone, as shown in Table I, the computed
permeabilities are 1346 mD for the micro-CT image and
1274 mD for the reconstructed microstructure, which are
also in good agreement with the experimental value
1100 mD. Here again, the LBM simulation reconfirms the
ability to reproduce the long-range connectivity using
multiple-point statistics reconstruction although the predicted
permeability is still underestimated, which is consistent with
the percolation probability shown in Fig. 14.

FIG. 12. The 2D cuts through a conditional 3D reconstruction of
the carbonate rocks1503,0.345mm/pixeld with the slice porosities
f indicated. The images are postprocessed.(1) XY plane (Z=75,
conditioning data,f=0.3202). (2) XY nearest conditioning plane
sZ=74,f=0.3167d. (3) XZ planesY=75,f=0.3433d.

FIG. 13. Void-void autocorrelation functions of Berea sandstone
averaged over the three principal orthogonal axes. The autocorrela-
tion function of the reconstructed structure is compared with that of
micro-CT (line) and that of a 2D training image(dotted line).

FIG. 14. Fraction of percolating cells for images using different
reconstruction methods. Note that incorporating higher-order infor-
mation in the reconstruction significantly improves the long-range
connectivity of the pore space, although it still performs worse than
process-based reconstruction methods. The data except multiple-
point statistics and micro-CT are taken from[28].

H. OKABE AND M. J. BLUNT PHYSICAL REVIEW E70, 066135(2004)

066135-8



2. Carbonate rock

Since no microtomographic image of the carbonate rock
is available, the LBM simulation is the only way to assess
the reconstructed structures. The computed permeability av-
eraged over six realizations after postprocessing is 19.8 mD
for the reconstructed microstructures. Although the value is
overestimated compared to the experimental permeability of
6.7 mD, the estimation is good considering the significant
size difference between the reconstructed images(around
503 mm3) and the experimental plug core that has a volume
eight orders-of-magnitude larger. Larger training images can
capture more statistics and may produce more realistic im-
ages with similar permeability values to the experiment. In
addition more information, such as several thin-section im-
ages and multi-orientation thin-section images, may improve
the results.

VI. CONCLUSIONS

We have proposed a multiple-point statistics method to
construct 3D pore-space images from 2D thin sections. The
method reproduces typical patterns observed in a training
image. We applied the method to Berea sandstone and car-
bonate samples. We successfully predicted the autocorrela-
tion function, fraction of percolating cells, and permeability
computed using the lattice-Boltzmann method(LBM ) for
Berea.

After validating the method for a sandstone, a carbonate
rock was reconstructed and its permeability simulated by the

LBM was compared with the experimental value. The pre-
dicted permeabilities were overestimated by a factor of three;
however, the result is good considering the significant size
difference between reconstructed images and the experimen-
tal sample.

In this study, a combination of a small 2D image and a
939 template with multigrid simulation was sufficient to
capture typical patterns seen in the 2D image. However, for
more heterogeneous samples more information is needed.
The reconstruction can be improved using additional infor-
mation, such as higher-order information and several thin-
section images, including multi-orientation images if the me-
dium is anisotropic, at the expense of more computer power
and memory.
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